Quantum Dot Downconverters: LED Package Integration

Julian Osinski, Ph.D. VP of Product Marketing Pacific Light Technologies

DOE SSL R&D Workshop, Tampa, FL, January 29, 2014

QD Nanoparticle Emitters

CdS, CdSe, CdTe

Murray, C. B.; Norris, D. J.; Bawendi, M. G. *JACS*, **1993**, 115, 8706 Alivisatos, A. P. *Nature Materials* **2003**, *2*, 382

Optical properties controlled by size, materials, shape

Advantages of QD downconverters

- Precise peak emission placement (± 2 nm)
- Very narrow emission peaks (< 35 nm)
- Fast radiative decay times—(ns compared to μs)
- Very high efficiencies
- Soluble--Composites can be clear

White Light LEDs: How It's Done Today

Blue LEDs + Phosphors Produce White Light

Why QDs in LEDs?

QDs Simultaneously Increase Efficacy and Improve Color Quality

- Red or other wavelengths where you want them
- Efficacy improvements thanks to narrow spectrum: 20-40% benefit for WW
- Customizable spectrum allows improved CRI: >90 easily obtained

QDs Reduce System Cost

- Fewer LEDs required in a luminaire
- Smaller drivers and heatsinks required

Replacing Phosphors with QDs in LED Packages

Quantum dots must perform on-chip to contribute significantly to solid-state lighting

On-chip QDs: Practical Requirements

Quantum dot materials need to stand up to a host of environmental demands:

- Mixing into silicone: room air, ambient conditions, possibly with phosphors or fillers
- Curing (150C, 1-2hrs)
- Lens Molding
- Solder Reflow (260C, ~10 sec)
- Non-hermetic use condition at high temperature and blue flux

Choice of Silicones

- Two major types in common usage
- Each LED manufacturer has their favorites
- Ideally, QD performance is independent of the matrix
- Other considerations: viscosity, hardness, darkening...

	Methyl	Phenyl
Refractive Index (n _p)	1.41	1.53-1.54
Transmittance	Excellent	Excellent
Light Stability	Excellent	Very Good
Gas Barrier	Fair	Very Good

Phenyl encapsulants may enhance efficiency of light extraction of LEDs.

Source: Dow Corning

Typical Two-part Silicone System

QD Concentration Control

- Concentrations must be adjusted to accommodate various thickness requirements of the silicone film above the chip.
- Typical film thickness range 50-400 microns
- The number-density of QDs above the chip determines the conversion ratio
- The mass per unit area or volume of the QDs required is very different than that of phosphors and in total is 100's of times less!

Quantum dots can be applied on-chip using most any application techniques and package types

Spraying, printing, dispensing, etc:

- Conformal or near-conformal coatings: most high power SSL packages use this approach
 - Includes COB packages and arrays
 - Customizable concentrations for various thicknesses
 - Highest fluxes and temps

Package Types II

- 2. Volume casting: "Goop in a cup"
 - High volume, mid-power package design
 - QDs don't settle!
 - 20-60 W/cm2, ~110C
 - This pkg type also used for display backlights

Settling Issues with Phosphors

This problem goes away with QDs

Package Types III

3. Remote Optic

- Lowest temperature and flux conditions
 - <10W/cm², <100C typically
- 10% or more higher efficiency claimed due to photon recycling
- Most cost-sensitive, uncertain market acceptance

Contributions to Heating

QD temperature is a function of:

- Conductive heating from chip
- Stokes loss
- Non-radiative losses, quantum efficiency < 100%
- Conductive/convective cooling from surfaces

Net temperature rise for mid-power LEDs typically 10-20C over T_{jn} Measurable by thermal camera or monitoring wavelength shift of QD emission.

Temperature Dependence: Low thermal quenching

PLT Results on Intensity Dependence

- For PLT materials, no cliff observed up to 50 W/cm, measured in silicone at ambient conditions
- Other tests have been made out to 1000 W/cm2

On-chip QD requirements: Summary

- Compatibility with silicones and mfg processes
- Tolerant to high temperatures
- Tolerant to high pump intensity
- Maintenance of high quantum efficiencies over life
- Ideally without a hermeticity requirement

Actual operational data

Thank you!

Julian Osinski, Ph.D.

Pacific Light Technologies

julian.osinski@pacificlighttech.com

Acknowledgements: Drs. Juanita Kurtin, Norbert Puetz, and the entire staff of Pacific Light Technologies

